The Arabidopsis blue light receptor cryptochrome 2 is a nuclear protein regulated by a blue light-dependent post-transcriptional mechanism.

نویسندگان

  • H Guo
  • H Duong
  • N Ma
  • C Lin
چکیده

Cryptochrome 2 is a flavin-type blue light receptor mediating floral induction in response to photoperiod and a blue light-induced hypocotyl growth inhibition. cry2 is required for the elevated expression of the flowering-time gene CO in response to long-day photoperiods, but the molecular mechanism underlying the function of cry2 is not clear. The carboxyl domain of cry2 bears a basic bipartite nuclear localization signal, and the cry2 protein was co-fractionated with the nucleus. Analysis of transgenic plants expressing a fusion protein of CRY2 and the reporter enzyme GUS (GUS-CRY2) indicated that the GUS-CRY2 fusion protein accumulated in the nucleus of transgenic plants grown in dark or light. The C-terminal domain of cry2 that contains the basic bipartite nuclear localization signal was sufficient to confer nuclear localization of the fusion protein. Phenotypic analysis of transgenic plants expressing the fusion protein GUS-CRY2 demonstrated that GUS-CRY2 acts as a functional photoreceptor in vivo, mediating the blue light-induced inhibition of hypocotyl elongation. These results strongly suggest that cry2 is a nuclear protein. Although no obvious light regulation was found for the nuclear compartmentation of GUS-CRY2 fusion protein, the abundance of GUS-CRY2 was regulated by blue light in a way similar to that of cry2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2.

Cryptochrome is a group of flavin-type blue light receptors that regulate plant growth and development. The function of Arabidopsis cryptochrome 2 in the early photomorphogenesis of seedlings was studied by using transgenic plants overexpressing CRY2 protein, and cry2 mutant plants accumulating no CRY2 protein. It is found that cryptochrome 2 mediates blue light-dependent inhibition of hypocoty...

متن کامل

Blue Light-Dependent Interaction of CRY2 with SPA1 Regulates COP1 activity and Floral Initiation in Arabidopsis

Cryptochromes are blue light receptors that mediate light regulation of gene expression in all major evolution lineages, but the molecular mechanism underlying cryptochrome signal transduction remains not fully understood. It has been reported that cryptochromes suppress activity of the multifunctional E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) to regulate gene expression in res...

متن کامل

Chimeric proteins between cry1 and cry2 Arabidopsis blue light photoreceptors indicate overlapping functions and varying protein stability.

A blue light (cryptochrome) photoreceptor from Arabidopsis, cry1, has been identified recently and shown to mediate a number of blue light-dependent phenotypes. Similar to phytochrome, the cryptochrome photoreceptors are encoded by a gene family of homologous members with considerable amino acid sequence similarity within the N-terminal chromophore binding domain. The two members of the Arabido...

متن کامل

Arabidopsis cryptochrome 2 completes its posttranslational life cycle in the nucleus.

CRY2 is a blue light receptor regulating light inhibition of hypocotyl elongation and photoperiodic flowering in Arabidopsis thaliana. The CRY2 protein is found primarily in the nucleus, and it is known to undergo blue light-dependent phosphorylation and degradation. However, the subcellular location where CRY2 exerts its function or undergoes blue light-dependent phosphorylation and degradatio...

متن کامل

Blue-light-independent activity of Arabidopsis cryptochromes in the regulation of steady-state levels of protein and mRNA expression.

Cryptochromes are blue-light receptors that mediate blue-light inhibition of hypocotyl elongation and blue-light stimulation of floral initiation in Arabidopsis. In addition to their blue-light-dependent functions, cryptochromes are also involved in blue-light-independent regulation of the circadian clock, cotyledon unfolding, and hypocotyl inhibition. However, the molecular mechanism associate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant journal : for cell and molecular biology

دوره 19 3  شماره 

صفحات  -

تاریخ انتشار 1999